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Abstract — Input/Output (I/O) automata are widely used when 

deriving high quality tests for (components of) complex discrete 

systems based on so called distinguishing sequences. For I/O 

automata, the number of distinguishability relations is much 

bigger than for classical deterministic Finite State Machines 

(FSM). In order to avoid submitting the same test sequence several 

number of times, i.e., avoid the “all weather conditions” 

assumption, the separability relation can be considered. If two 

Input/Output automata are separable then there exists an input 

sequence such that after submitting this sequence and observing 

produced outputs it can be uniquely concluded which automaton 

is under testing. In this paper, we modify the discipline of applying 

input sequences and discuss the derivation of separating sequences 

for automata with mixed states, i.e., states where transitions both 

under inputs and under outputs are defined, as well as with cycles 

labeled by outputs. We also illustrate how an adaptive separating 

sequence can be derived when both automata are input-enabled.  
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I. INTRODUCTION 

 When checking functional and non-functional requirements 
for complex programmable systems, a so-called mutation testing 
approach is widely used. The system specification is mutated 
using most crucial faults and an input sequence is derived that 
distinguishes the specification and its mutation if such a 
sequence exists, i.e., the distinguishability (separability) notion 
allows to formally define the conformance relation between the 
specification and an implementation under test. Distinguishing 
sequences are thoroughly studied for deterministic complete 
Finite State Machines (FSMs) [1] when at each state for each 
input there is exactly one transition. However, components of 
complex discrete systems can be partial and have the non-
deterministic behavior. Moreover, the requirement to have an 
output directly after each input is too strong, since a system 
under test can response with an output (sequence) only to a 
sequence of inputs. Therefore, Input/Output (I/O) automata [2, 
3] are more appropriate when describing the behavior of 
components of complex discrete systems. Nevertheless, the 
number of studies of distinguishing sequences for this model is 
much less. 

For deterministic complete FSMs the distinguishability 
relation means that an implementation is not equivalent to the 

specification FSM that is there exists an input sequence such that 
the specification and implementation FSMs have different 
output responses to this sequence. For transition systems which 
have the nondeterministic behavior and are only partially 
specified, the number of distinguishability relations is much 
bigger. Moreover, in this case, a distinguishing sequence with 
respect to the nonequivalence or non-reduction relations has to 
be applied several times while its length can be exponential with 
respect the the number of states of the specification if the 
specification is not observable [4, 5]. In order to avoid 
submitting the same test sequence several number of times the 
separability relation can be considered [6]. If two Input/Output 
automata are separable then there exists an input sequence such 
that after submitting this sequence and observing produced 
outputs it can be uniquely concluded which automaton is under 
experiment. In [7], such sequences are considered for I/O 
automata without mixed states, i.e., states where transitions both 
under inputs and under outputs are defined and there are no 
cycles labeled by outputs. In this paper, we extend the set of 
considered automata modifying the discipline of applying input 
sequences. We also illustrate how an adaptive separating 
sequence can be derived when both automata are input-enabled.  

The rest of the paper is structured as follows. Section 2 
contains the preliminaries. Section 3 illustrates how an 
(adaptive) separating sequence can be derived for a proper class 
of automata when at each state either input actions or output 
actions are specified. Section 4 proposes a method for deriving 
a separating sequence for general I/O automata. 

II. PRELIMINARIES 

A finite Input/Output (I/O) automaton or simply an 
automaton throughout this paper is a 4-tuple S = (S, s0, I, O, hS) 
where S is a nonempty finite set of states with the designated 

initial state s0, I  and O are finite input and output alphabets,  I  

O = , and hS  S  (IO)  S is the transition relation. There 

exists a transition from state s to state s under action а if and 

only if a triple (s, а, s)  hS. A state of the automaton is a mixed 
state if at the state, transitions under both inputs and outputs are 



defined. The automaton is observable1 if at each state under each 
action there exists at most one transition. The automaton is 
nondeterministic if at some state several output actions are 
specified [5]. In this paper, we consider only observable possibly 
nondeterministic automata if the converse is not directly stated. 

A trace of the automaton is a sequence of actions of I  O that 

is permissible at the initial state. Given a trace , in and out are 

input and output projections of trace .  
Denote Sin a subset of states where transitions under outputs 

are not specified. A trace at the initial state is complete if it is 
terminated at a state of the set Sin. In order to be able to observe 

such traces, a designated quiescence output   I  O is 
introduced [2, 3]; in other words, at each state where transitions 

under outputs are not specified a loop labeled by  is added. The 

obtained automaton is denoted by S and by definition,  is 

considered as an output. Therefore, a trace  of S is complete if 

and only if S has a trace , the latter corresponds to the fact 
that after this trace no output of the set O can be produced. 

Traces of S and S are closely related: given a trace of S, after 

deleting  a trace of the automaton S is obtained, and vice versa, 

given a trace  of S, if any number of  are added after any prefix 

of  that is complete then a trace of S is obtained. 

III. AUTOMATA WITHOUT MIXED STATES AND CYCLES WITH 

OUTPUTS 

A. Preset separability 

When using “white model” based testing there is a need to 
distinguish two automata by an experiment. Two automata 
S and P  are separable then an automaton under experiment can 
be uniquely recognized after applying a separating input 

sequence  and observing a corresponding output sequence. If 
automata S and P have no mixed states and cycles labeled by 
outputs then in [7], a method is proposed how to check if two 
automata are separable and if yes how to derive a separating 
sequence under the following hypothesis about applying input 
sequences [9]. Before applying the first or the next input the 
tester waits an appropriate timeout Тout, i.e., the separating 
experiment with an automaton is organized in the following 
way. The tester waits for the timeout Тout, if a system under test 
produces an output then the timer advances from zero and the 
tester again waits until the timeout Тout expires. If during the 
timeout there is no output produced then the system is assumed 

to produce . After this, the tester applies the next input and 
waits again for Тout. Under this assumption, the separability 
problem can be solved for FSMs MS and MP which can be 
constructed for automata S and P.  

The set of MS states is the set Sin  {s0}; the initial state of 

MS is s0. FSM MS is a 5-tuple (Sin, s0, I  {null_in}, O  O2  

…  Ons  {}, TMS), null_in  I, where ns is maximum length 
of a trace of S that has only outputs. The transition relation TMS 

is the following. For each state s  Sin such that (s, i, s)  TS, s 

 Sin, TMS has the transition (s, i, , s), and for each state s  Sin 

such that (s, i, s)  TS, s  Sin, TMS has a transition (s, i, o1 o2. . 

. ok, s), k  ns, where s  Sin is the o1 o2. . . ok-successor of 

 
1Very often such an automaton is called deterministic [8]. However, 

we use the word «deterministic» for observable automata where at any 

state at most one output is specified.  

state s. If the initial state of S is not in Sin, then TMS has a 

transition (s0, null_in, o1 o2. . . ok, s), where s  Sin, and s the o1 
o2. . . ok-successor of state s0.  

If the automaton S (P) is observable then the corresponding 
FSM MS (MP) is also observable but can be partial and 
nondeterministic. In [7], it is shown that automata S  are P are 
separable if and only if FSMs MS and MP are separable. For 
checking the FSM separability and deriving a separating 
sequence, a method from [10] can be utilized. Let MS and MP be 

separable with a separating sequence . If  is headed by an 

input of I, then   is a separating sequence for automata S and 

P. If  = null_in  where null_in is a so-called empty input then 

 is a separating sequence for S and P. If a separating sequence 
is applied to an automaton under experiment that is S or P, then 
under the above hypothesis for applying input sequences it is 
possible to uniquely determine which automaton is under 
experiment.  

Example 1. For automata S and P in Figs. 1а and 2а with 
initial states 1 and a, the corresponding FSMs MS and MР are in 
Figs. 1б and 2б. These FSMs are not separable and thus, 
automata S and P also are not separable. 

 
Fig. 1a. Automaton S 

 
Fig. 1b. FSM MS 



 
Fig. 2a. Automaton P 

 
Fig. 2b. FSM MP 

 

B. Adaptive separability of automata without mixed states 
In the paper [13], it is shown that the length of a separating 

sequence when it exists can exponentially depend on the number 
of states at least of one automaton. In order to reduce such 
length, an adaptive separating experiment with automata can be 
considered where a separating sequence becomes adaptive, i.e., 
the next input significantly depends on the outputs to the 
previous inputs. An adaptive separating sequence can be 
represented by an acyclic automaton without mixed states: at a 
state where outputs are not defined there is at most one input 
while at each intermediate state where outputs are defined there 

is a transition under each output including .  

An automaton T = (T, t0, I, O  {}, hT) without mixed 
states that has an acyclic transition graph is a test case for 
automata defined over input alphabet I and output alphabet O if 
at each non-deadlock state, either at most a single input or all the 
outputs are defined and each complete trace is tailed by an 

output or .  
Automata S and P without mixed states which are defined 

over input alphabet I and output alphabet O are adaptively 
separable if there exists a test case such that each complete trace 
is at most in one of these automata. Automata are adaptively 
nonseparable if for each test case there exists a complete trace 
that is a trace of both automata. 

Since there is one-to-one correspondence between traces of 

automaton S  (P) and FSM MS (MР) [7], automata S and P  are 
adaptively separable if and only if FSMs MS and MР are 
adaptively separable. If at each state of sets of Sin и Pin of 
observable automata S and P the behavior is defined under each 
input then FSMs MS and MР are complete and observable, and 
for checking their adaptive separability the following theorem 
can be used.  

Theorem 1 [11, 12]. Observable complete initialized FSMs 
are adaptively separable if and only if their intersection has no 
complete submachines.  

Example 1 (continuing). The intersection of FSMs MS and 
MР in Figures 1b and 2b is shown in Figure 3a. Given a pair of 
states, there is an undefined transition in the intersection if FSMs 

at these states have no common outputs. A test case representing 
an adaptive separating sequence is shown in Figure 3b. 

 
Fig. 3a. The intersection of MS и MР (a) 

 
Fig. 3b. A test case representation of an adaptive separating sequence 

 

IV. SEPARATING AUTOMATA WITH MIXED STATES 
Consider an automaton that has a state where both inputs and 

outputs are defined. In order to avoid races between inputs and 
outputs at such a state, another input timeout Тin is introduced. 
Until this timeout expires, the automaton expects an input. If 
there is no input before the timeout Тin expires then the 
automaton produces one of the prescribed outputs and moves to 

the next state or produces a quiescence output  when the 
timeout Тout expires. Thus, by definition, Тout is always bigger 
than Тin. Given the timeout Тin, the timer starts to advance from 

zero after submitting an input or observing an output. When  is 
produced, an input can be applied at any time instance.  

In order to derive a separating sequence for automata with 
mixed states or with cycles labeled by output actions, we 

propose to transform such an automaton S into an automaton S 

without mixed states. For this purpose, we add a special input  

into S: the input  means that we need to wait Тout without 
submitting any input. Correspondingly, at each state s where 
outputs are defined, a transition to state s' is added under new 

input . All the transitions under outputs at s and only they are 

moved to state s'. Thus, the number of states in S is increased 
by the number of states where there are transitions under 

outputs, i.e., at most twice. An automaton S has no mixed states 

neither cycles labeled by output actions. For each state of S 

where are no transitions under outputs and , a loop labeled by 

 is added to S. At the next step, FSM M
S is derived for the 

automaton S, (Section 3a) with a small exception. If there is a 

loop at state of S', labeled by  и , then at this state a loop 

labeled by / is added to the FSM M
S.  

Example 2. Consider an automaton Q in Figure 4a for which 

an automaton Q is shown in Figure 4b while the FSM M
Q is in 

Figure 4c. 



 

Fig. 4a. Automaton Q (a) 

 

Fig. 4b. Automaton Q 

 

Fig. 4c. FSM M
Q 

Automata S and P with mixed states are separable if 

automata S  and P are separable. If automata S and P are 
separable then a separating sequence for these automata is a 
separating sequence for automata S and P. However, the 
hypothesis for applying input sequences becomes more 
complex. An automaton under experiment waits for an input 

until the input timeout Тin expires and thus, a tester has to apply 
inputs fast enough, and a timer for calculating Тin advances from 
zero after applying a current input or receiving an output 

different from . After producing  under input , in general, 
the next input can be applied at any time instance but for having 
unique requirements for applying inputs we assume that the 
output timeout Тout has to be over. When a separating sequence 

has an input , this means that no input is applied to an 
automaton under experiment: we just wait for an output to be 
produced during the output timeout Тout and only after an output 
is produced or Тout expires the next input can be applied (in the 
Тin range). 

As an example, consider how a sequence yx is applied to 
automaton Q (Fig. 3a). An input y is applied and after this, the 
next input x is applied in the Тin range; thus, the automaton 
reaches state 3. After this an output is expected until the timeout 
Тout expires. In our example, the output !1 is produced. We wait 

another timeout Тout and obtain  as an output. The experiment 
is over, since there are no more inputs in the input sequence. We 
cannot apply an input sequence xy at the initial state of Q since 
after accepting input x the automaton reaches state 2 where a 

transition under y is not defined. By construction of S, the 
following statement holds.  

Theorem 2. Given a trace  of S, a trace of S is obtained 

after deleting  from the trace , and vice versa, given a trace 

 of S, if  is added in front of each output (except ) and any 

number of  in front of  and after , then the obtained sequence 

is a trace of S.  

Automata S and P have no mixed states and in order to 
check their separability and derive a separating sequence (if the 

automata are separable), FSMs M
S and M

Р for automata S, и 

P, are derived. If FSMs M
S and M

Р are separable then a 
separating sequence for these FSMs is a separating sequence for 
automata S and P. 

Indeed, if  is a separating sequence for automata S and P 

then  is a separating sequence for FSMs M
S и M

P. If  is a 

shortest separating sequence for FSMs M
S и M

P, then  = 

… and any proper prefix of  is not a separating sequence. 

Therefore,  takes both automata to states where the sets of 

output to … do not intersect, and thus, having a response to 

… we can conclude which automaton S or P is under 
experiment. 

Given an automaton S in Figure 1а, construct a 

corresponding automaton S and derive a corresponding FSM 

M
Q (Figure 4c) for the automaton Q in Figure 4a. FSMs M

Q и 

M
S are separated by an input sequence , since S after waiting 

for an output during Тout does not produce any output while Q 
produces an output !0. 

V. CONCLUSIONS 

In this paper, we have proposed a technique for separating 
Input/Output automata without a nonobservable action and in 
fact, this paper is the extension of [13] where separating 
sequences are derived for I/O automata without mixed states, 
i.e., states where transitions both under inputs and under outputs 
are defined and there are no cycles labeled by outputs. In this 
paper, we extend the set of considered automata modifying the 
discipline of applying input sequences and the next step is to 
extend the obtained results for checking the existence and 



derivation of an adaptive separating sequence for Input/Output 
automata as well as to study other kinds of state identification 
sequences such as homing and synchronizing sequences. 
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